HINTSA Coach Education Day

Training and competing in extreme environments: References

14 May 2018

Dr Chris Tyler

University of Roehampton, London

The reference list is broken down in to sub-sections based on the session:

- Session 1. Physiological demands of driving in the heat
- Session 2. Beating the heat acclimation, cooling, and hydration strategies
- Session 3. Hypoxic training for physiological adaptations

The names are hyperlinked to the PubMed listing.

Session 1. Physiological demands of driving in the heat

Slide(s)	Authors	Year	Title	Journal	Vol	Pages
7, 13, 14,	Galloway &	1997	Effects of ambient temperature on the capacity to	Medicine and Science in Sports and	29	1240 -
15, 18	<u>Maughan</u>		perform prolonged cycle exercise in man	Exercise		1249
10, 11	Nybo & Nielsen	2001	Hyperthermia and central fatigue during prolonged	Journal of Applied Physiology	91	1055 –
			exercise in humans			1060
14	Lafrenz et al.	2008	Effect of ambient temperature on cardiovascular	Medicine and Science in Sports and	40	1065 –
			drift and maximal oxygen uptake	Exercise		1071
18	Tyler and	2008	The effect of ambient temperature on the reliability	International Journal of Sports	29(10)	812 –
	Sunderland		of a preloaded treadmill time-trial	Medicine		816
21, 23	Brearley and Finn	2007	Responses of motor-sport athletes to v8 supercar	International Journal of Sports	2(2)	182 –
	<u>(2007)</u>		racing in hot conditions	Physiology and Performance		191
21, 23	Carlson et al.	2014	Physiological strain of stock car drivers during	Journal of Thermal Biology	44	20 – 26
			competitive racing			
21, 22	<u>Jareno et al.</u>	2010	Heat stroke in motor car racing drivers	British Journal of Sports Medicine	21(1)	48
21, 22	Potkanowicz	2015	A Real-Time Case Study in Driver Science:	International Journal of Sports	10(8)	1058 –
			Physiological Strain and Related Variables	Physiology and Performance		1060
21, 22, 23	Walker et al.	2001b	Performance enhancement in rally car drivers via	Comparative Biochemistry and	128(4)	701 –
			heat acclimation and race simulation	Physiology		707
22	Jacobs and Olvey	2000	Physiological responses to high-speed, open-wheel	Medicine and Science in Sports and	34(12)	2085 –
			race car driving	Exercise		2090
22, 23, 91	Walker et al.	2001a	The combined effect of heat and carbon monoxide	Comparative Biochemistry and	128(4)	709 -
			on the performance of motorsport athletes	Physiology		718
22	Watkins et al.	2006	The physiology and pathology of formula one Grand	Clinical Neurosurgery	53	145 –
			Prix motor racing			152

Slide(s)	Authors	Year	Title	Journal	Vol	Pages
38	<u>Taylor</u>		Human Heat adaptation	Comparative Physiology	4(1)	325 –
						365
39, 40,	<u>Tyler et al.</u>	2016	The Effects of Heat Adaptation on Physiology, Perception and	Sports Medicine	46	1699 –
41			Exercise Performance in the Heat: A Meta-Analysis			1724
46, 47	<u>Tyler et al.</u>	2015	The effect of cooling prior to and during exercise on exercise	British Journal of Sports	49	7 – 13
			performance and capacity in the heat: a meta-analysis	Medicine		
48	Gonzalez-Alonso	1999	Influence of body temperature on the development of fatigue	Journal of Applied	86(3)	1032 –
	<u>et al.</u>		during prolonged exercise in the heat	Physiology		1039
51, 52	Cuttell et al.	2016	A Comparison of 2 Practical Cooling Methods on Cycling Capacity	Journal of Athletic Training	51(7)	525 –
			in the Heat			532
52	Ansley et al.	2008	The effects of head cooling on endurance and neuroendocrine	Physiological Research	57(6)	863 -
			responses to exercise in warm conditions			872
52	Katica et al.	2017	Impact of upper body precooling during warm-up on subsequent	Journal of Science and	16	
			time trial paced cycling in the heat	Medicine in Sport		
52	Lee et al.	2014	Neck cooling and cognitive performance following exercise-	European Journal of Applied	114(2)	375 –
			induced hyperthermia	Physiology		384
52	Sunderland et	2015	Neck-cooling improves repeated sprint performance in the heat	Frontiers in Physiology	5(6)	314
	<u>al.</u>					
52	<u>Tyler et al.</u>	2011	Practical neck cooling and time-trial running performance in a	European Journal of Applied	110(5)	1063 -
			hot environment	Physiology		1074
52	Tyler and	2011	Neck cooling and running performance in the heat: single versus	Medicine and Science in	43(12)	2388 -
	Sunderland		repeated application	Sports and Exercise		2395
52	Tyler and	2011	Cooling the neck region during exercise in the heat	Journal of Athletic Training	46(1)	61-68
	Sunderland					
54	Lee et al.	2008	Cold drink ingestion improves exercise endurance capacity in the	Medicine and Science in	40(9)	1637 -
			heat	Sports and Exercise		1644

Session 2. Beating the heat – acclimation, cooling, and hydration strategies

Session 3. Hypoxic training for physiological adaptations

Slide(s)	Authors	Year	Title	Journal	Vol	Pages
74	Squires and Buskirk	1982	Aerobic capacity during acute exposure to simulated altitude,	Medicine and Science in	14(1)	36 – 40
			914 to 2286 meters	Sports and Exercise		
76	<u>Gore et al.</u>	1997	VO2max and haemoglobin mass of trained athletes during	International Journal of	18(6)	477 –
			high intensity training	Sports Medicine		482
78	<u>Terados</u>	1992	Altitude training and muscular metabolism	International Journal of	13(1)	206 –
				Sports Medicine		209
79, 80	Levine and Stray-	1997	"Living high-training low": effect of moderate-altitude	Journal of Applied	83(1)	102 –
	Gundersen		acclimatization with low-altitude training on performance	Physiology		112
81	Chapman et al.	1998	Individual variation in response to altitude training	Journal of Applied	85(4)	1448 –
				Physiology		1456
83	Saugy et al.	2016	Cycling Time Trial Is More Altered in Hypobaric than	Medicine and Science in	48(4)	680 -
			Normobaric Hypoxia	Sports and Exercise		688
84	Hauser et al.	2016	Similar Haemoglobin Mass Response in Hypobaric and	Medicine and Science in	48(4)	734 –
			Normobaric Hypoxia in Athletes	Sports and Exercise		741
86	Lundby et al.	2012	Does 'altitude training' increase exercise performance in elite	British Journal of Sports	46(11)	792 –
			athletes?	Medicine		795
87	Siebenmann et al.	2012	"Live high-train low" using normobaric hypoxia: a double-	Journal of Applied	112(1)	106 -
			blinded, placebo-controlled study	Physiology		117
88, 89	Bonetti and	2009	Sea-level exercise performance following adaptation to	Sports Medicine	39(2)	107 –
	<u>Hopkins</u>		hypoxia: a meta-analysis			127